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Robust Global Motion Estimation Oriented
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Abstract—Most global motion estimation (GME) methods are
oriented to video coding while video object segmentation methods
either assume no global motion (GM) or directly adopt a coding-
oriented method to compensate for GM. This paper proposes a hi-
erarchical differential GME method oriented to video object seg-
mentation. A scheme which combines three-step search and motion
parameters prediction is proposed for initial estimation to increase
efficiency. A robust estimator that uses object information to reject
outliers introduced by local motion is also proposed. For the first
frame, when the object information is unavailable, a robust esti-
mator is proposed which rejects outliers by examining their distri-
bution in local neighborhoods of the error between the current and
the motion-compensated previous frame. Subjective and objective
results show that the proposed method is more robust, more ori-
ented to video object segmentation, and faster than the referenced
methods.

Index Terms—Global motion estimation (GME), hierarchical
differential estimation, residual information, robust estimator,
video object segmentation.

1. INTRODUCTION

INCE motion is an important part of video signals, motion
S estimation is one of the most widely used methods in video
processing. In general, motion is classified as local motion (LM)
or global motion (GM). The term local motion refers to the ap-
parent 2-D motion caused by object movement, whereas the
term global motion is used in this paper to describe the apparent
2-D motion introduced by camera motion that is parameterized
by a motion model. The process to estimate the parameters of
the model is known as global motion estimation (GME). GME is
usually followed by global motion compensation (GMC) (e.g.,
for predictive coding [1] or for object segmentation [2], [3]).

GME has many applications, such as sprite generation, video
coding, scene construction, and video object segmentation.
Depending on the application, the requirements on GME may
differ. For example, in video coding, estimated motion does
not need to resemble the frue motion as long as the bit rate
is achieved for a given quality (e.g., [4]). Even if GMC fails,
local motion compensation (LMC) is used to maintain the
coding quality. On the other hand, video object segmentation
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requires accurate GME to compensate for GM and retain the
motion of objects (e.g., [2]). In this case, LMC is avoided to
preserve the objects. Most GME methods are designed for
video coding while most object segmentation methods either
assume no camera motion or directly use a coding-oriented
GME method. Some coding-oriented GME techniques sacrifice
quality to gain speed, which may not be suitable for object
segmentation. Since accuracy usually means extra computa-
tions, computational complexity is another major challenge in
segmentation-oriented GME.

GME approaches are classified into three categories: phase
correlation based [5], [6], background matching based [7]-[9],
and hierarchical differential based [1], [10], [11]. Phase correla-
tion methods first transform the frames to the frequency domain
using the Fourier transform. Then, using the Fourier shift prop-
erty, the translation between consecutive frames is identified.
The advantages of phase correlation methods are fractional-pel
accuracy and insensitivity to illumination changes [12]. How-
ever, the translational model they assume is not suitable for
many video sequences. Phase correlation is used as a coarse esti-
mation followed by a refinement in the spatial domain [6]. Back-
ground matching methods are based on the block matching al-
gorithm (BMA), but generalized to the whole background. They
are easy to implement but lack both estimation accuracy and
efficiency.

The hierarchical differential approach is efficient and effec-
tive for GME [4]. Hierarchical differential methods start by
building a frame pyramid using spatial prefilters and down-sam-
pling. The estimation starts at the coarsest level of the pyramid
and the result is considered an initial motion estimate that aids
convergence at consecutive levels. N-step search and GM pa-
rameters prediction are some of the adopted search techniques
for initial motion estimation. The estimation result is later
refined using optimization techniques (e.g., Newton—Raphson
method) and then projected onto the finer level of the pyramid
and the optimization is repeated. This loop is continued until
the finest level of the pyramid is reached. Since GME is a
computationally intensive task, many efforts focus on reducing
its computational complexity, e.g., [10] and [11] are modified
faster versions of [1]. In [10], history GM information is used
for parameters prediction instead of traditional N-step search in
the initial motion estimation step. In [11], several improvements
are proposed such as motion edge selection, residual block
based outliers rejection and adaptive weighting function.

This paper proposes a robust GME method that is oriented to
video object segmentation and is based on the hierarchical dif-
ferential approach. We introduce three key contributions aimed
at increased accuracy and reduced computational complexity.
First, we propose a robust motion estimator for the first frame
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in the absence of object information from the previous frame.
This robust estimator considers the distribution of candidate out-
liers and provides a good starting point for the proposed method.
Second, we integrate the three-step search from [13] with a mod-
ified GM parameters prediction based on [10] to propose an ini-
tial motion estimation scheme faster than the one in [1] and both
faster and more accurate than the one in [10]. Finally, we pro-
pose a robust GM estimator that utilizes binary residual (i.e.,
object) information from the previous frame to reject outliers
caused by LM or noise, thus preventing them from interfering
with the estimation in the current frame.

The rest of the paper is organized as follows. In Section II,
we rederive the general hierarchical differential GME approach.
In Section III, we introduce the proposed GME method. We
compare the proposed and referenced methods in Section IV
and conclude with Section V.

II. GENERAL HIERARCHICAL DIFFERENTIAL GME

A. Motion Model and Estimation Criteria

The purpose of a motion model is to describe the real motion
between consecutive frames F,, and F;,_; of a video sequence
at time instances n and n — 1. Based on this model, motion pa-
rameters are estimated using a motion estimation algorithm that
requires a motion model, an estimation criterion or objective
function, and an optimization method. In GME, a single model
applies to the whole frame (compared to block or region based
LM estimation). There are different parametric motion models
to describe GM, e.g., affine, projective, and bilinear. Depending
on the selected model, we control the level of detail and preci-
sion of the estimated motion.

We use the following six-parameter affine model

dz; =ag + a17; + azy;

dy; = as + asx; + asy; (D
where (7;,;) is the location of the i*! pixel in the current
frame F,, (dz;,dy;) is the motion vector of the corre-
sponding pixel from the previous frame Fj,,_; to F,,, and
a = (ag,a1,a2,as,a4,a;5) is a vector whose elements are
the affine GM parameters. Note that dx; and dy; in (1) are
functions of both z; and y;. We select the affine model because
it describes the projected 2-D motion of most camera motions
[12].

With the motion model defined, we incorporate it into the
displaced frame difference (DFD) estimation criterion which
is based on the constant-intensity assumption. This assumption
states that the intensity remains constant along motion trajecto-
ries. The estimation error F(a) based on the DFD is defined as

N
E(a) = Z | P (s + doiy ys + dys) — F(zi, 9)" ()

i=1

where N is the total number of pixels in F}, and s = 1 in case
of the sum of absolute difference (SAD) or s = 2 in case of the
sum of square difference (SSD).

B. Newton—Raphson Method as Optimization Criterion

To estimate the GM-parameters vector a, we use the
Newton—Raphson method [12] to search for the value of a that
minimizes the objective function in (2) with s = 2. Because the
six-parameter affine motion model in (1) depends nonlinearly
on a, the minimization proceeds iteratively until meeting a
stopping criterion [4]. Let a be the value of the parameters
at iteration ¢. E(a) can be approximated by its second-order
Taylor series [14]

E(a)~ E(a’) + d(a—a")T + %(a —a")H(a-a"T (3)

where E(a’) is the DFD error in (2) at a’, d = VE(a') is the
gradient of E(a) at a’, H = 9*E(a')/dayday, is the Hessian
of E(a) ata’, and T is the transpose. The variables k and m are
indexes for the motion model parameters (e.g., in the proposed
method k,m € {1,2,...,6}).

By differentiating both sides of (3) with respect to a, the gra-
dient VE(a) of E(a) is

VE(a)=d+ (a—a')-H. )

A minimum of E(a) occurs when VFE(a) = 0 in (4) (assuming
H is positive definite). We set (4) to zero and solve for a to build
the update equation da as

d+(a-a')H=0 = a=a'—d-H 'n
ba=a—a'=—-d -H ' 5)

The value of a at the next iteration is a1 = a®+4-6a. We rewrite
(5) in a nonmatrix form as the system of nonlinear equations

Z Himbam = dy ©)

where dy, denotes elements in d and Hy,, elements in H. Using
singular value decomposition (SVD) [12], [14], we solve (6) for
the increments da,,, and add them to the current set of parame-
ters in a’ to get the next estimation a®*!. This operation is re-
peated until F'(a) falls under a preset threshold Er g or a max-
imum number of iterations ¢,y is reached, depending on which
event occurs first. £y, and Erpg provide a trade-off between
accuracy and complexity.

The closer the initial values of the parameters in a are to the
true values, the earlier Newton—Raphson method may converge.
To aid in the convergence, we perform the estimation in a mul-
tiresolutional manner.

C. Multiresolutional Representation of GM Estimation

Multiresolutional or hierarchical representation of a video
frame is a widely used strategy in video processing, where the
original frame is rebuilt as a pyramid (see Fig. 1). The finest
level is the original frame and the resolution between successive
levels is reduced by half, both horizontally and vertically. After
the frame pyramid with V' levels is built using downsampling,
the estimation of the parameters in a starts at the coarsest level
and progresses to the next finer level until it reaches the finest
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Fig. 1. TIllustration of the structure of frame pyramid.

level. The result from the previous coarser level is projected to
the next finer level as an initial solution.

There are three advantages of using the multiresolutional ap-
proach. First, details information at a finer resolution may in-
terfere with the estimation, therefore, the result obtained at the
coarsest level is more likely to be close to the true solution and is
considered a good initial estimate. Second, if we define a search
range R to search for corresponding pixels at the finest level, the
search range scales down to R/2V 1 at the coarsest level with
a V-level pyramid. Third, since the projection of the result from
the previous coarser level provides a good starting point for the
search, the number of search iterations is reduced at the current
level. Therefore, the total number of computations is smaller
than that required by directly searching at the finest level, and
the computational complexity is reduced.

III. PROPOSED HIERARCHICAL DIFFERENTIAL GME

While performing the estimation in a multiresolutional
manner reduces complexity, the estimate of GM at the coarsest
level has an impact on both the quality of the estimates and
computational complexity. Moreover, outliers, caused by LM
or noise, interfere with the estimation causing both loss in
accuracy and increase in computations. This paper proposes, as
shown in Fig. 2, 1) a fast initial estimation scheme combining
three-step search and GM parameters prediction (Section III-A);
2) a robust estimator that uses residual object information from
previous frames to reject outliers (Section III-B); and 3) a
robust estimator that considers local neighborhoods in rejecting
outliers when the residual binary information from previous
frames is unavailable (Section III-C).

A. Initial Motion Estimation

At the coarsest level of each frame of the video sequence, we
require initial GM parameters for the optimization method. The
proposed initial estimation is divided into two phases. The first
phase lasts for the first six frames and the second phase from
the seventh frame on. In the first phase, we apply the three-step
search from [13] to provide the initial estimate. In the second
phase, we use a proposed GM parameter prediction scheme for
the initial estimate that is based on [10] with modifications. Note
that the three-step search gives reliable estimates but is time
consuming and that the proposed GM parameters prediction is
much faster. Thus, we integrate them to build an initial estima-
tion scheme that is faster than the one in [1] and both faster and
more accurate than the one in [10].
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Fig. 2. Block diagram of the proposed GME method.

After the frame pyramid is built, the initial estimation is ap-
plied at the coarsest level of the pyramid where we assume that
there is only translational camera motion with the two-parame-
ters translation motion model

dr; = ap, dy; = a3 @)
which is sufficient as a starting point to help in the conver-
gence of the subsequent optimization steps. We use the three-
step search to find the values of ag and a3 in (7) that minimize
the SAD [see (2)]. We use the SAD because it requires less com-
putations than the SSD. Fig. 3 shows an example of how the
three-step search is used to find these values. At the first step,
the search range R is 4 pixels and the values with the minimum
SAD in this range are found to be [ag, a3] = [4,4]. Then, R is
reduced down to &2 pixels in the second step and the values that
minimize the SAD are [ag, as] = [4, 6]. Finally, R is down to
+1 pixel at the last step and the final values are [ag, as] = [3, 7].
Only 25 trial vectors are used here but can cover a maximum
displacement of £7 pixels at the coarsest pyramid level corre-
sponding to a search range R of £28 pixels at the finest level. In
most real video sequences, this range is large enough to cover
the GM between two F,, and F,,_1.

After obtaining the translation parameters ay and asz, we
apply Newton—Raphson method (Section II-B) at each level of
the frame pyramid starting from the coarsest and continuing to
the finer level. The projection of the motion parameters from
the current level onto the next one is performed by multiplying
the translation parameters ag and a3 by two and keeping the
remaining parameters (a1, a2, a4, and as) unchanged. While
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Fig.3. Example of three-step search method. The final (minimum SAD) values
are ag = 3 and az = 7.

the three-step search provides a good initial estimation tech-
nique, it is computationally expensive. Therefore, we propose
to use it as the initial estimator for the first six frames after
which we start using GM parameters prediction. We propose to
use only four predictors for the GM parameters to reduce the
computational complexity of [10]. These predictors are

zero predictor : ar® =0
past predictor : ab®st —a, 4 g
acceleration ( )

=2a, 1 —ag 2

I A

From (8), we select the prediction with the minimum SAD as
in [10]. Note that to obtain all the predictors in (8), we need to
have processed six frames. This is why we need the accurate
three-step search as an initial estimator for the first six frames.

The motivations behind the selection of the predictors in (8)
are: a) we achieve similar performance using the four predic-
tors in (8) instead of the six in [10]; b) with this reduction, the
proposed initial estimation is 1.5 times faster than in [10]; and
c) they represent the most common scenarios in typical camera
motion. For example, if the camera suddenly stops, the zero pre-
dictor aZ°*° = 0 is the most accurate. If the camera is moving
at a constant speed, the most accurate predictor is the past pre-
dictor aP?** = a,,_;. If the camera is accelerating or deceler-
ating, the acceleration effect is considered in the acceleration
predictor a”“’l‘““‘m = 2a,_ 1 —a,_2, making it the most ac-
curate in this case. The long-term average predictor overcomes
(by smoothing) unexpected sudden changes in GM.

The advantages of using the proposed GM parameters pre-
diction starting from the seventh frame on instead of continuing
to use the three-step search (as in [1]) are: 1) six GM parame-
ters are predicted instead of two which results in better initial
estimates, e.g., in zoom motion; 2) the camera motion usually
has a predictable pattern over time; and 3) the three-step search
requires 25 SAD calculations as opposed to eight making the
proposed prediction 3.13 times faster.

acceleration predictor : a2

average __

long-term predictor : al

B. Using Residual Information for Robust Estimation

One challenge in GME is that there is only one GM model ap-
plied to the whole frame, but not all the pixels in that frame ex-
perience the same GM. Therefore, pixels which have LM cause

deviations in the SSD and bias the estimates of GM parame-
ters. In other words, pixels experiencing LM are considered out-
liers, i.e., statistical data elements that deviate from the assumed
global model [15], [16]. Outliers come also from noise. Robust
estimation in GME aims at detecting and rejecting outliers intro-
duced by LM or noise. Using Gaussian low-pass filtering while
building the frame pyramid helps reduce outliers introduced by
noise.

Outliers introduced by LM are detected as the set of pixels
that are not undergoing GM. Remaining pixels are considered
inliers [12]. Outliers are rejected from the next iteration in (5),
and only the inliers are used for the rest of the estimation.

We propose a robust estimator based on the M-estimators
[17] through minimization of

N

= ZP(EL), Ez = |Fn—l (:E;y:) -

i=1

SSD Fo(ai, v ©9)

where p(.) is symmetric positive-definite function [18], =} =
x; + dzi, yi = yi + dyi, and F; is the error of the i*" pixel.
To propose an effective p(.) for outliers rejection in this paper,
we use binary residual frames {B,, }. Assuming that the GM is
successfully compensated, the residual information B,, between
F, and F/_; (GM-compensated F},_1) contains the objects and
the newly appeared background. We use B,, to reject outliers
when estimating the GM parameters of the next frame F}, ;1 (see
Fig. 2). B,, is obtained by applying an object detection method
[19] which consists of change detection to obtain the difference
frame D,, between F,, and F),_; and thresholding of D,,
obtain the binary residual frame B,,.

To prevent outliers misclassification in B,,, we propose the
following outliers detection strategy. We represent B,, as a set
of nonoverlapped blocks b, of size W x W or

L
:Ula blmb ¢7l¢q and

(10
where ¢ is the empty set and L is the number of blocks in B,,.
Let S, = {b1,bs,...,br} be the set of all blocks in B,, and
Sz ={Z(b1), Z(ba),..., Z(br,)} be the set of the numbers of
object pixels (white plxels) in each block. Z(.) is an operator
that returns the number of object pixels for a given block b;.
Also, let Spp, C Sp,, be the set of all blocks on the boundary
of the current frame (i.e., boundary blocks). The set of candi-
date outliers blocks Sgn C S, is the set which includes the
blocks with the w% (e.g., w = 30) largest numbers of object
pixels or Z(b;). We decompose S5 into Sg and ST, (ie.,
Sg =55 USY ), where 5§ is the set of outliers blocks and
SI = - SOI is the set of inliers blocks. 5113 and SO
are populated using three rules. These rules are: 1) a candidate
block is an outliers block if it is a boundary block in F;,; 2) a can-
didate block is an outliers block if it is not a boundary block but
has more than two candidate outliers blocks in its eight-neigh-
borhood; and 3) a candidate block is an outliers block if it has at
least one outliers block in its eight-neighborhood after the first
two rules are applied.
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Fig. 4. Comparison: results of D,, using the proposed and the referenced methods [1] and [9], respectively.

We realize the three outliers rejections rules using two equa-
tions applied to all b; € Sgn . First, we apply rule one and two

to produce an intermediate set of outliers blocks, S On , using

S; ={by : by neighbor of b;}
o byesS \%
o . 1 € 5BB,
blean if {|5f05§n|23 N (11)

where |.| represents the set cardinality in this equation. Then,
we produce the final set of outliers blocks Sgn with

b e S9 v
b€ S9 if { B

(bz €S5S - Sgn) A (5;’ NSy # <b)

which realizes rule three. The proposed outliers detection
strategy thus classifies all pixels in B,, either as pixels in the
blocks of SOH, which are set to 1 indicating outliers pixels
undergoing LM, or inliers pixels in the blocks of SZL _, which
are set to zero indicating pixels undergoing GM. Consequently,
the proposed robust estimator in (9) becomes

(12)

N E; :(i€b)A(beSE)
SSD = ;p(Ei>: p(E;) = {0 c(ieb) A (b€ SG)
(13)

where i is the i*® pixel in B,, at (z;,y;) and E; is as in (9).

To avoid propagating estimation errors if the GME in F;,_;
fails (e.g., the total number of the outliers blocks changes dras-

tically), we check the percentage change ¢,. in outliers count be-
tween time instances n and n — 1

_ |Pn_Pn—1|

t
" Pn—l

y Pn:|Sgn

O
v P = ‘Sanl

(14)

with P,, and P,,_; as the number of the outliers blocks in B,,
and B,,_1, respectively. If ¢, > tp, the previous residual infor-
mation B,,_1 and a,,_1 are used instead as follows:

An = an—1; B, = B,_1
P, =P, +(1-X)P,—1 (15)
where a,, and a,,_1 are the GM parameters of F,, and F,_1,
respectively, 0 < A < 1 is a confidence measure in current
estimation, and 0.4 < tp < 1. Note that in (14) we calculate an
initial value for P,, using the current number of outliers pixels.
We update the value of P, using (15) to temporally stabilize it
subject to t, > tp,.

The two advantages of using residual information in (13) and
(14) are: 1) B,, contains pixels that do not undergo GM and,
thus, is more accurate in rejecting outliers than a statistical esti-
mate; and 2) no extra computation is involved since the residual
information comes from the object segmentation used.

The above outliers rejection handles outliers resulting from
LM. To reject outliers due to noise, we adapt the object detec-
tion step in Fig. 2 to noise. Since noise is modeled as additive
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Fig. 5. Comparison: results of B,, using the proposed and the referenced methods [1] and [9], respectively.

white Gaussian noise (AWGN), only its standard deviation o, is
needed. The choice of AWGN as a model for noise is motivated
by AWGN being the most common noise model for terrestrial
TV broadcasting [22] and because according to the central limit
theorem, the aggregate effect of the high count of photon arrivals
at CCD camera sensors can be well approximated by Gaussian
statistics.

The effectiveness of the proposed outliers rejection strategy
is mainly because video objects are spatio-temporally correlated
and because LM is the main source of outliers for GME. The
rules of (11) and (12) recognize this correlation. We exploit tem-
poral correlation by selecting outliers pixels in F;, using object
pixels in F;,_; and spatial correlation by re-examining our se-
lection of outliers pixels in F},. To elaborate, we distinguish be-
tween three types of pixels in F},: 1) normal pixels; 2) candidate
(probable) outliers pixels; and 3) outliers pixels (most probable).
A first step in outliers detection is to find candidate outliers
pixel: a pixel in the current frame F,,, which was surrounded
by outliers pixels in the previous frame F,,_1, is a good can-
didate to be an outliers pixel in F},. After establishing candi-
dacy in F;,, the first rule of (11) states that a candidate outliers
pixel that is located close to the boundary of the current frame
is an outliers pixels. The reason is that this pixel most prob-
ably belongs to newly appeared background. The second rule
of (11) states that a candidate outliers pixels whose immediate
and extended neighbors are candidate outliers pixels is an out-

liers pixels. The reason is that this candidate outliers pixels is
most likely a moving outliers pixels from the previous frame.
After applying the first and second rules, we have a mixture of
candidate outliers pixels and outliers pixels in F},. This is when
exploitation of spatial correlation comes with the third rule in
(12). This rule states that a candidate outliers pixel that is close
to outliers pixels in the current frame is an outliers pixel.

C. Robust Estimation for the First Frame

The robust estimator in Section III-B cannot be applied for the
first compensated frame F} since no previous binary frame By
exists. Robust estimation in F} is, however, of significant im-
portance for algorithm convergence. For F}, we modified (13)
as follows. Instead of considering the pixels in the error E; indi-
vidually, neighboring pixels are also considered when rejecting
the outliers. Thus, we propose to reject outliers in F} as follows.

1) Sort the set S¥ = {E;,1 < i < N} for F] in descending

order (/V is the total number of pixels in a frame).
2) Ignore the top #% of SE where 5 < # < 15 and take the
threshold ¢ to be the next E; € SE.
3) Classify a pixel ¢ € F] as an inlier only if:
a) E; <lg;
b) 7 has m; neighbors (m; > 6) in its eight-neighbor-
hood where each neighboring pixel j satisfies F; <
tE.
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As a result, (13) for Fy changes to

N

o _ [ FE; (E’Z < tE) A (mi > 6)
SSD = E;), E;) = :
; p(E:),  p(E:) { 0 : otherwise.

(16)

The effectiveness of the proposed robust estimator for the first

frame is due to its consideration of the distribution of candidate

outliers which provides an accurate starting point for the subse-
quent steps.

IV. RESULTS AND COMPARISON

To evaluate the performance of the proposed method, we
compared it to the referenced methods [1], [9], [10]. Since
[10] is a faster version of [1], the results are similar based on
[10] and our simulations. Therefore, we do not show them in
this paper. Simulations were carried out using standard test
sequences with GM and LM: BBCcar, Tennis in PAL (720 X
576) format and Ferrari, Stefan, and Coastguard in CIF (352
x 288). BBCcar shows a fast moving jeep with a pan and small
rotational camera motions and moving tree leaves. Tennis has
camera zoom-in motion to a table-tennis player. Ferrari shows
a fast moving car with complex camera motion and the object is
large and its motion is dominant. Stefan shows a tennis player
with inconsistent but fast camera motion, which is difficult to
predict and there is LM in the audience region which interferes
with the GME. Coastguard shows two ships cruising in oppo-
site directions with mainly translational camera motion and the
moving ships also cause the water to move which interferes
with GME.

A. Algorithm Parameters

We set the parameters ¢y,,x and Er g required as stopping cri-
teria for (6) to tax = 32 and Ergy = 0.001, which we found
suitable for video object segmentation. Increasing the value of
tmax beyond 32 does not lead to a significant increase in accu-
racy compared to the increase in computations.

We use a three level frame pyramid (Fig. 1) because our sim-
ulation shows V' = 3 is good for PAL frame size or lower (e.g.,
CIF). For frame size larger than PAL, V' should be increased be-
cause we may utilize a better initial estimate by yet descending
for an extra level. The search range R = =+28 in initial mo-
tion estimation (Section III-A) depends mainly on the speed of
the GM and the frame rate. For general video sequences with
GM, R = £28 is enough to cover the expected amount of mo-
tion between two consecutive frames. For faster camera motion
or when capturing at a low frame rate, R should be increased to
compensate for the increased distance a pixel can move between
two consecutive frames.

For GM parameters prediction in the initial motion estimation
in Section III-A, we use a fifth order predictor, i.e., long-term
predictor in (8), because a lower order does not allow for enough
smoothing of fluctuating or unstable GM. A higher order pre-
dictor increases the computational time and is not necessary
since motion changes over time.

In (10), we use W = 8 for CIF frames and W = 12 for
PAL/NTSC frames. ¢ p for (14) is set in relation to the amount of
GME error that can be tolerated by the target application. We set
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tp = 0.4. For application with low tolerance to GME error, ¢ p
should be increased. The lower bound of ¢p = 0.4 is important
to avoid unnecessary frequent adjustments. We experimentally
set the confidence measure in the current estimate in (15) to
A = 0.3, and 6 in Section III-C to 10%.

B. Subjective Results

Figs. 4 and 5 show selected output frames of each test se-
quence. Change-detection frame D,, between F), and F,_(see
Fig. 2), followed by binary frame B,, are given to show the ef-
fect of using different GME methods on object segmentation.
As can be seen, the proposed method is more effective than the
referenced methods [1], [9] in separating objects from the back-
ground. For example, the complex and dominant camera motion
in Ferrari makes the referenced methods fail to identify outliers,
while the proposed method is successful. Also, the proposed
method performs better than the referenced method despite the
fast motion in Stefan and the moving water in Coastguard.

C. Objective Results

We use four criteria to evaluate the proposed GME objec-
tively: mean absolute error (MAE), segmentation quality mea-
sures [20] (temporal color histogram difference and spatial color
contrast along object boundary), stability of percentage of ob-
ject (white) pixels in B,,, and computational complexity.

The MAE between the current frame F;, and GM compen-
sated previous frame F _, is

1
MAE = —SAD
NS
N
> | Fuoi(witdai, yi+dy)— Fo(zi,y)| (17)

1=1

1
N

where N is the number of pixels in the frame. Fig. 6 shows
sample MAE comparison between our method and the refer-
enced GME methods [1], [9]. As can be seen, the proposed
method has significantly lower MAE than both referenced
methods due to improved robustness in outliers rejection.

Fig. 7 shows the robustness to noise of the proposed method
and referenced methods [1], [9] for the Coastguard which was
corrupted with AWGN of 25- and 30-dB peak signal to noise
ratio (PSNR). The proposed method is more robust (lower
MAE) to noise than the referenced methods for both noise
levels. Note that the higher the noise level (i.e., the lower the
PSNR), the more outliers are present which may affect the
estimation causing the MAE to increase. Note also that the
proposed GME method is designed to estimates the perceived
GM resulting from camera motion and does not explicitly take
video noise into account. Thus, the GMC compensates for the
GM and not for the noise. As a consequence, the GM com-
pensated frame still includes noise. To implicitly compensate
for the noise, we adapt the object detection step (see Fig. 2) to
noise that we estimate using the method in [21]. This consid-
erably improves the performance of the proposed method for
noisy videos as can be seen in Fig. 6. Also, Fig. 6 shows the
superiority of the proposed method compared to [1] and [9]
due to noise-adaptive outliers detection where the difference in
performance remains stable for all noise levels.
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Assuming that the color histogram of video objects is tem-
porally stationary and is different from the color histogram of
the background, then the difference between this histogram in
F,,_1 and F;, should represent the temporal stability of the ob-
ject segmentation. Moreover, assuming that object boundaries
are coincided with color boundaries, if the objects are success-
fully segmented, there should be a color contrast difference be-
tween the pixels along the segmented object boundaries. There-
fore, spatial color contrast along object boundary measures the
quality of object segmentation. We have, thus, integrated both
the proposed and referenced methods [1], [9] into the object seg-

mentation method in [19]. Then, we evaluated the segmentation
output (“updated” B,, in Fig. 2) of the GME methods using the
temporal color histogram difference and spatial color contrast
along object boundary measures from [20]. Note that with these
measures, a lower value indicates improved object segmenta-
tion. Fig. 8(a)-(c) shows that the color contrast along object
boundary measure for the proposed method is lower than the
referenced methods [1], [9] for the Stefan, Ferrari and BBCCar
test sequences, indicating improved segmentation performance
of our method. Fig. 8(d) shows sample results for the temporal
color histogram difference measure which is significantly lower
and more temporally stable when using the proposed method
compared to the referenced methods [1], [9].

Assuming object features are temporally consistent in a
video shot, the percentage of the segmented object pixels
should change gradually throughout the sequence. Fig. 9 shows
sample comparison of the percentage of white (object) pixels
in B,,. Note that the evaluation criterion in this figure is the
stability, not the lower percentage. Our method is more stable
to compensate GM and preserve LM than [1], [9]. Fig. 9 also
shows the standard deviation of each curve and the proposed
method achieves the lowest standard deviation (approximately
three times lower).

GME is a time-consuming task and efficiency is another im-
portant evaluation criterion. The proposed method is about 1.6
times faster than [1] under an Intel(R) Xeon(TM) CPU 2.40GHz
operated by Linux. More specifically, see the following.

1) The proposed initial motion estimation requires on the long

run eight SAD as opposed to 25 SSD calculations in [1],
making it 7.82 times faster (for CIF) than in [1].
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2) The proposed parameter optimization is 1.26 times faster
than [1] due to its smaller number of GM parameters.

3) The proposed outliers rejection is 1.38 times faster than [1]
due to the elimination of histogram processing.

The proposed method is 1.2 times faster than [10] due to two
reasons. First, we use four candidates to predict the GM param-

eters compared to six candidates in [10]. Second, the proposed

robust estimator archives better GME estimates which improves
the predictions in the next frames and makes the parameter op-
timization process faster. Note that our method is also 2.5 times

faster than [9].

This paper proposed a fast and robust GME method oriented
to object segmentation in video sequences. It is based on the

V.

CONCLUSION

hierarchical differential approach with several improvements.
First, the proposed method integrates three-step search with GM
parameters prediction in initial motion estimation for improved
accuracy and reduced complexity. Second, it uses residual (ob-
ject) information from the previous frame to reject outliers when
estimating the GM parameters of the current frame. Third, it
considers local neighborhoods in rejecting outliers in the first
frame without object information from the previous frame. Both
subjective and objective results show that the proposed method
is more robust, faster, and more suitable for object segmenta-
tion than the referenced methods with mutual benefit between
the segmentation of motion compensated frames and the esti-
mation of motion in the form of a feedback loop.
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