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Abstract—The classical local disparity methods use simple and
efficient structure to reduce the computation complexity. To in-
crease the accuracy of the disparity map, new local methods utilize
additional processing steps such as iteration, segmentation, cali-
bration and propagation, similar to global methods. In this paper,
we present an efficient one-pass local method with no iteration. The
proposed method is also extended to video disparity estimation by
usingmotion information as well as imposing spatial temporal con-
sistency. In local method, the accuracy of stereo matching depends
on precise similarity measure and proper support window. For the
accuracy of similarity measure, we propose a novel three-moded
cross census transform with a noise buffer, which increases the
robustness to image noise in flat areas. The proposed similarity
measure can be used in the same form in both stereo images and
videos. We further improve the reliability of the aggregation by
adopting the advanced support weight and incorporating motion
flow to achieve better depth map near moving edges in video scene.
The experimental results show that the proposedmethod is the best
performing local method on theMiddlebury stereo benchmark test
and outperforms the other state-of-the-art methods on video dis-
parity evaluation.

Index Terms—Census transform, disparity estimation, motion
flow, spatial temporal consistency.

I. INTRODUCTION

T HE resurgence of interest in 3D films and television
has launched a new era in visual media consumption

and research. Given a pair of stereoscopic views, disparity
estimation is a crucial step for depth-based processing and
communications. The numerous advanced algorithms for dis-
parity estimation may be generally categorized as either local
or global methods. The global methods compute all disparities
of the image simultaneously by optimizing the global energy
function. They produce accurate disparity map but they are
usually complex and computationally expensive. On the other
hand, the local methods compute the disparity of the pixel based
on the support window cost aggregation. They have simple
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structure and are more efficient in terms of computational
complexity compared to the global methods. However, it is
difficult to find the correct matching point in flat areas because
all pixels in the window contains similar structure and texture.
Two main concerns in local methods are the accuracy of the
similarity measure and the proper support window on which
the matching accuracy depends.
Common similarity measures are sum of absolute difference

(SAD), sum of squared difference (SSD), normalized cross
correlation (NCC), and non-parametric transforms such as rank
and census. The rank and census transforms are more robust to
radiometric distortion because they yield relative ordering of
the pixel intensity rather than the intensity values themselves.
Therefore, for image regions with similar colors, non-para-
metric transforms may cope with the matching ambiguities
well, while for image regions with similar local structures, the
color differences (SAD and SSD) may cope with the matching
ambiguities well. According to the evaluation of similarity
measures [1], census transform achieves the best overall per-
formance throughout all experiments with simulated and real
radiometric differences, except in the presence of strong image
noise.
Another important research topic in local method is how to

select the proper support window for each pixel. The simple
fixed size rectangular window is used to find corresponding
pixels in a pair of left and right images in early local approaches.
However, this results in the foreground smearing problem near
depth discontinuities due to the assumption that all pixels in
the window have the same disparity. To solve this problem, the
adaptive-window method [2] finds an optimal window based on
the local variation of intensity and disparity. This method uses a
rectangular window, which is not suitable for arbitrarily shaped
depth discontinuities. The multiple-window method [3] calcu-
lates the correlation with nine pre-defined windows and selects
the disparity with the smallest matching cost. This method also
has the limitation of window shape. To obtain more accurate
results at depth discontinuities, the locally adaptive support
weight approach (LASW) [4] adjusts the support weights of the
pixels in the window by using the photometric and geometric
distance with respect to the center pixel. This method deals
with the pixels near depth discontinuities more effectively
than the two methods mentioned above. Segment-support [5]
improves the reliability of adaptive support aggregation by
adding additional segmentation process. Disparity calibration
[6] increases the matching process to two steps by adding
disparity calibration while the traditional local methods use
one-step process. PatchMatch [7], the best local method among
all other local methods on the Middlebury benchmark [8] uses
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additional processes such as iteration, slanted plane and propa-
gation scheme to obtain better results. These three methods are
computationally expensive. Cost-filter [9] obtains consistent
edge-preserving results by using the guided filter and it is one
of the best local methods for the Middlebury dataset. It is worth
noting that LASW and Cost-Filter do not use any iteration and
additional step, which could make the algorithm more complex.
LASW and Cost-filter are good edge-preserving methods but
they do not provide a reliable solution for disparity estimation
in textureless (flat) areas, which have different characteristics
from edges.
Stereo video disparity estimation is at an early stage while

stereo image disparity estimation is mature. This may be the
consequence of two factors. First, it is due to lack of stereo video
datasets with ground-truth disparity maps. Second, it is due to
temporal inconsistency problems, such as flickering resulting
from simply applying current state-of-the-art image-based al-
gorithms to video. To reduce this artifact, [10] uses median
filtering along flow vectors computed by the method of Horn
and Schunck [11]. However, the results are of moderate quality.
Total Variation (TV) method [12] shows impressive results by
treating the video disparity as a spatio-temporal volume to im-
prove spatial and temporal consistency and it presents the pos-
sibility for directly extending current image-based disparity al-
gorithms to the video domain.
In this paper, we propose a three-moded census transform

with a noise buffer to be more tolerant of image noise in flat
areas and a cross-square census to increase the reliability of
census measure. We suggest the effective combination of three
cost measures (census, color and gradient), which have different
characteristics on stereo matching, to obtain more accurate cost
measure in a variety of image regions. These three new ideas can
be utilized in both stereo images and videos in the same form
for similarity measure. In video processing, motion is a crucial
factor and generally moving objects tend to have a higher degree
of saliency. However, most disparity methods may have diffi-
culty dealing with fast moving edges in video scenes. To solve
this problem, we incorporate optical flow for support weight
computation within the localized window. This approach is new
and helps to determine the spatial ambiguities by utilizing tem-
porally consistent information. To further improve the support
weight, we define the conditional relation between similarity
and proximity and the correlated relation between similarity and
motion by analyzing each gestalt principle. We demonstrate that
the proposed local method is the best performing local method
on both the Middlebury stereo benchmark test and the video
disparity evaluation on 5 synthetic stereo video datasets. In par-
ticular, these meaningful results are achieved with adding no
additional process and keeping the classical framework of local
methods. We enforce temporal consistency by refining our dis-
parity estimates with the spatio-temporal consistency algorithm
described in [12].
This paper is an extension of our conference paper [13]. The

rest of this paper is organized as follows. The system structure
and new similarity measure are presented in Section II. We
present the details of the advanced support weight for stereo
image and video in Section III. The disparity computation and
occlusion filling method are present in Section IV. Section V

Fig. 1. Block diagram of the overall system.

shows experimental results and discusses their significance.
Section VI concludes with some remarks.

II. SYSTEM STRUCTURE AND SIMILARITY MEASURE

A. Structure of the Proposed Local Method

The proposed method is an efficient one-pass local method
applicable to both stereo images and videos with no iteration.
The block diagram of the overall system is shown in Fig. 1.
It consists of four main components: similarity measure, sup-
port weight, disparity computation, and occlusion filling. For
video disparity estimation, optical flow and TV refinement algo-
rithms will be incorporated. The core blocks for the accuracy of
disparity estimation are similarity measure and support weight
block which will be discussed in details.

B. Three-Moded Cross Census and Combination of Similarity
Measures

Census transform encodes the pixel value into bit-stream rep-
resenting the relative ordering of the neighboring pixels. To
achieve more precise census similarity measure, we need to
obtain larger spatial structure by increasing the size of census
window. However, the error probability might increase as the
window size increases over the certain value. The larger the
census window size is, the more occluded pixels would be in-
cluded in the transformed bitstream. There is a trade-off be-
tween more spatial information and accuracy of the estimate.
Fig. 2 illustrates that the big square census window in Fig. 2(b)
is more likely to be affected by the occlusion area (gray color
area) than the window in Fig. 2(a), and therefore its transformed
information will be severely distorted. To alleviate this problem,
we propose the cross-square shape of census window which can
contain more spatial information while being less exposed to the
occlusion area as shown in Fig. 2(c).
As discussed in Section I, the census transform is robust to ra-

diometric distortions and achieves the best overall performance
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Fig. 2. Three different census windows. (a) 5 5. (b) 9 9. (c) Cross-square.

in both local and global methods. However, it experiences dif-
ficulties in finding the correct correspondences in flat areas, as
most methods do. This difficulty is due to the fact that the census
matching cost is extremely sensitive to even small image noise
in flat area since all pixels have similar intensity value, and
then the left and right census can be encoded differently due
to camera noises. Most of stereo images are distorted due to
camera noises except for synthetic stereo images. To reduce the
mismatch due to the distortion from left and right camera, we
propose a three-moded census transform with a noise buffer.
The original census has two modes where a bit is set to 1 if
the neighboring pixel in the census window has higher intensity
than the center pixel and 0 otherwise. On the other hand, our
three-moded census uses two bits to implement three modes and
it is defined as

(1)

where denotes concatenation and W represents the census
window. represents the intensity at center pixel c and is
noise buffer threshold. Camera noise is intensity-dependent and
the noise variance is proportional to intensity [14], [15]. The
noise buffer should be increased to get consistent results as the
noise variance increases. Therefore, we can define as a func-
tion of intensity:

(2)

where denotes nearest integer operator and, empirically, a
reasonable value for is 500 and 50 for synthetic images and
real-world images, respectively. Fig. 3 shows how three-moded
census works under noisy environment. In flat areas, the neigh-
boring pixels show the same intensity as shown in Fig. 3(a).
Under noisy environment, the original census transform yields
very different bit-stream from the noiseless case as shown in
Fig. 3(b), while the three-moded census transform produces a
consistent bit-stream as shown in Fig. 3(c). Additionally, we
don’t define the census transform at the center pixel because it
is always zero.
Fig. 4 shows example of left and right bitstreams resulting

from the three-moded cross census transform, which are used in
the calculation of Hamming distance . To further improve
the matching accuracy, we incorporate the color distance
and gradient distance between two center pixels as shown

Fig. 3. Comparison of the original census and the three-moded census in
flat areas. (a) Original census without noise. (b) Original census with noise.
(c) Three-moded census with noise.

Fig. 4. Example of three-moded census transform with and three simi-
larity measures.

in Fig. 4. In other words, we use the census transform to compare
the spatial structure of two census windows, while we use the
color and gradient distance to compare two center pixels. The
Hamming distance of two census transforms is defined as

(3)

where represents the left transformed bit-stream and de-
notes the bitwise XOR operation. The color distance between

and in RGB vector space
is defined as

(4)

The gradient is composed of two components,
which are partial derivatives along x-axis and y-axis. The partial
derivative can be expressed as in RGB space.
The gradient distance between and

is defined as

(5)
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Fig. 5. Disparity maps on “Laundry” computed by different similarity
measures. (a) Left image. (b) Color. (c) Combination of color and census.
(d) Combination of color, census, and gradient.

Fig. 6. Left support window and right support window.

where represents the partial derivative along x-axis in the
color domain of the left image.
We propose the combination of three distances, which is

simple but very effective by yielding more reliable similarity
measure by compensating one another. Fig. 5 illustrates how
each similarity measure improves the accuracy of disparity
estimation. Fig. 5(b) is computed by using color distance,
which is commonly used and it shows many errors in the
similar color area (green box). In Fig. 5(c), some errors are
recovered by combining census Hamming distance. However,
wrong matches in densely textured region with high frequency
condition (red box) are not recovered. In Fig. 5(d), different
types of errors are recovered and the best overall disparity
map is produced by using the combination of three measures.
Note that there exist many similarity measures showing dif-
ferent characteristics and it is important how to choose proper
measures and integrate them for better matching performance.
For integrated similarity matching cost, we use a robust cost
function including three distances:

(6)

where and are Hamming distance, color
distance and gradient distance, respectively, between pixel
and pixel as shown in Fig. 6. and are empirical
parameters.

III. ADVANCED ADAPTIVE SUPPORT WEIGHT

A. Gestalt Grouping

According to Gestalt principles, human observers are able
to group visual objects that share certain common character-
istics [16]. The best-known grouping laws are proximity (ob-
jects that are close to each other are grouped together), simi-
larity (objects that have similar color are grouped together), and

common fate (objects that move at the same speed in the same
direction are grouped together) [17]. Common fate is closely
related to motion flow, which will be denoted as “motion” for
simplicity. Whenever objects have characteristics in common,
they get grouped and formed a larger visual object, known as a
gestalt [16].
From these observations, we can assume that human ob-

servers group pixels in a scene based on how close two pixels
are spatially, how similar their colors are, and how similar
their velocities are. Thus, we can use the strength of grouping
when computing the support weight of a pixel, which should be
proportional to the probability that the two pixels have the same
disparity. The closer two pixels are in proximity and color, the
larger their support weight. The same can be said about the
motion flows of two pixels. These three observations may be
treated in an integrated manner to obtain a reasonable grouping.
Each grouping law can compensate for the others when they
fail in specific cases. For instance, the motion cue helps viewers
distinguish figures when the object color or outlines are not
clear. Therefore, it would be beneficial to model the human
visual system and segment objects by using support weights
based on Gestalt principles. We analyze each principle and
their relationship to find effective integration method for stereo
image and video.

B. Support Weight on Stereo Images

The ideal support window is an arbitrarily shaped window
which consists of only pixels at the same depth. It is very dif-
ficult to determine accurately which pixels belong to the same
object. We consider the adaptive support window on the basis
of two gestalt grouping laws (color similarity and proximity),
which can be used together to group objects as in [4]. To obtain
an advanced support weight, we analyze two issues, color space
and relationship between similarity and proximity to decide how
to integrate. First, the previous works use the Euclidean distance
in CIELab color space. The CIELab color space is perceptually
uniform and its Euclidean distance corresponds to the percep-
tual color difference between any two colors. However, the use
of the CIELab color space makes the color distance less selec-
tive for the pixels, which are close chromatically. Fig. 7 illus-
trates the comparison of two color spaces in the area where each
pixel has chromatically similar color. In Fig. 7(a), the center
pixel and the neighboring pixel
in RGB space are converted to and

in CIELab space, respectively. The
RGB and CIELab color difference are 1.7321 and 0.4260, re-
spectively. The ratio in similar color region ( and
) is 4.0657. On the other hand, the ratio in distinct color re-

gion ( and ) is 2.1321. It shows higher ratio
in similar color region than distinct color region. Fig. 7(b) and
(c) show color difference at each pixel with respect to the center
pixel in RGB and CIELab space. RGB produces more selective
distance than CIELab in similar color region. Additionally, the

metrics are particularly sensitive to errors in low RGB
signal [18]. The color space should provide good distancemetric
for area with similar color as well as with distinct colors. To this
end, we use RGB space for color similarity. The RGB color dif-
ference between the center pixel and the neighboring
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Fig. 7. Comparison of RGB and CIELab color difference. (a) Support window.
(b) RGB color difference. (c) CIELab color difference.

Fig. 8. Comparison of the original support and the proposed conditional sup-
port on “Tsukuba”. (a) Left image. (b) Original support. (c) Conditional support.

pixel is calculated as in (4). The spatial distance (proximity) is
calculated as Euclidean distance.
The adaptive support weight is based on the strength of

grouping by similarity and proximity. The strength of grouping
by similarity is defined using Laplacian kernel as

(7)

with being an empirical similarity parameter. The strength
of grouping by proximity is defined in the same way as in (7).
The weights based on the spatial proximity with respect to
the center pixel are constant for every shifted window while
the weights based on the color similarity vary for each shifted
window. Hence, the spatial fixed kernel might yield negative
consequences in the specific area such as the disparity discon-
tinuity area with similar color because it is blindly aggregated
according to the distance and it causes wrong matches near
disparity discontinuity. To alleviate this problem, we suggest
the conditional adaptive support weight as

(8)

where is the spatial distance between pixel and pixel
and is a color difference threshold determining the color

similarity between two pixels.
Fig. 8depicts theprocesswhere the conditional supportweight

improves the disparity map. Fig. 8 shows the left image and two
disparity maps; Fig. 8(b) shows the estimate using original sup-
port always including proximity, while Fig. 8(c) shows the esti-
mate with conditional support measure. At the border of the dis-
parity discontinuity area with a similar color in the foreground
and background (red box), the spatial proximity kernel may pro-
duce many wrong disparities due to the blind aggregation by the
close spatial distance, as shown in Fig. 8(b). In this case, we ex-
clude the proximity term to avoid the blurring support at the edge
of disparity and exploit only the color similarity to determine the
correct support according to even slightly different color differ-
ence. Therefore, our conditional support recovers a lot of errors

as shown in Fig. 8(c). This is precisely the goal of the conditional
adaptive support weight in (8).

C. Benefits of a Motion Cue

Although motion is a key factor in video processing, it has
not been used for support weight computation within the local-
ized window. Fig. 9 illustrates the benefits of using motion cues.
We use the LASW method, in which proximity and similarity
are exploited in the independent manner, and extend it to eval-
uate how the motion term affects the quality of the disparity
maps. As the local methods require pixel-based computation,
we use classic optical flow method with the weighted non-local
term [19], which is one of state-of-the-art optical flow methods.
We exploit the motion to compute the independently integrated
support weight. The “car” and “skydiving” video frames are
processed at a resolution of 480 270 and 480 276, respec-
tively. The parameters used are fixed throughout the experi-
ment. In Fig. 9, the selected left view (Fig. 9(a) and (f)) and
its optical flow (Fig. 9(b) and (g)) are shown. Fig. 9(c) and
(h) are obtained by using only the proximity term for the sup-
port weight, Fig. 9(d) and (i) are obtained by adding the simi-
larity term, and Fig. 9(e) and (j) are obtained by adding the mo-
tion term. As shown in Fig. 9(a), it is challenging to discover
the outline of the car since it is very ambiguous. In Fig. 9(c),
many errors are observed at the edges of the moving car (red
circle). In Fig. 9(d), some errors are recovered by using the
color cue but edges are not preserved. In Fig. 9(e), incorpo-
rating the motion term preserves the edges even though they
are visually ambiguous. We believe that this is due to the pre-
served background flow as shown in Fig. 9(b). Although there
is ambiguity in the stereo correspondence, motion between a
pair of successive video frames is much more consistent, es-
pecially in a localized window in background regions. There
exist large forward motions in the “skydiving” video as shown
in Fig. 9(g). Generally, moving objects tend to have a higher
degree of saliency and viewers will fixate on the skydiver fast
landing forward as shown in Fig. 9(f). Therefore, accurate dis-
parity estimation is required at these moving edges. The dotted
red line in Fig. 9(f) represents the moving edge of the sky-
diver. In Fig. 9(h) and (i), large smearing problem is observed
at the edges while in Fig. 9(j), the problem is much alleviated
by incorporating the motion cue for support weight. Note that
the left edge of the foreground is compared and the occlusion
appears at the right side of the foreground due to the nega-
tive disparity in Fig. 9(f). Disparity is estimating spatial corre-
spondences while motion estimates temporal correspondences,
so the additional information promotes disambiguation. Conse-
quently, the results in Fig. 9 imply that the support weight inte-
grating the motion cue yields more accurate disparity estimates,
especially near the edges of moving objects.

D. Support Weight on Stereo Videos

The effectiveness of using motion cue for support weight
has been verified in previous section and the conditional re-
lation between similarity and proximity has been defined in
Section III.B. We analyze the motion flow estimate and the rela-
tionship between similarity andmotion to verify how the motion
term should be integrated. The motion difference between two
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Fig. 9. Disparity maps for “Car” in the upper row and “Skydiving” in the lower row. (a) and (f) Left view. (b) and (g) Optical flow. (c) and (h) using only proximity.
(d) and (i) using proximity and similarity. (e) and (j) using proximity, similarity, and motion.

pixels is calculated by using a measure of optical flow. There
are two types of motion difference computation: absolute flow
endpoint difference (ED) and angular difference (AD) [20]. We
use ED because AD penalizes errors in larger flows less than er-
rors in small ones [20], which is undesirable. Let
and be the flow vectors of pixel and pixel ,
respectively. We suggest the truncated motion difference:

(9)

where is a truncation value. Such a model reduces the influ-
ence of flow outliers just as the truncated matching cost limits
the influence of wrong matches [21]. We must keep in mind
that the optical flow is an estimated value and cannot be com-
pletely error free. The support weight based on the three gestalt
grouping principles should be redefined for video disparity. We
suggest a correlated model, in which the conditional property
should be inherited for the integrated support weight as shown
in (10) at the bottom of the page. This model originates from
the intuition that color similarity and motion tend to correlate
with each other in general. For example, the center pixel and its
neighboring pixel have a high likelihood of having different mo-
tion vectors if they also differ significantly in color, as expected
near object edges. When this occurs, the correlated model de-
creases the overall support weight as compared with the inde-
pendent model, since the Laplacian is raised to a power based
on the large color difference. Additionally, the two pixels are
likely to have similar motion if they also have the same color,
as in the flat areas of an object surface. In this case, we can
also expect to find a positive correlation among the two metrics.
Therefore, the support weight will increase in reference to the
independent model. However, while color is an observed quan-
tity, motion is an estimated value. Therefore, color should take
precedence over motion when there is a discrepancy between

them and the correlation assumption fails. This is precisely what
the model in (10) enforces. For example, if there is a large dif-
ference in color but a small difference in motion, then the value
for the correlated support weight is decreased. Therefore, the
support weight depends more on the color cue than the motion
cue. In contrast, the independent model always treats all of the
gestalt principles equally. In summary, we define conditional re-
lation between similarity and proximity and correlated relation
between similarity and motion.

IV. DISPARITY COMPUTATION AND OCCLUSION FILLING

Once the support weights are calculated, the aggregated cost
is computed by aggregating the raw similarity measures, scaled
by the support weights in the window. If we consider only the
left support window, the cost computation may be erroneous
since the right support window may have pixels from different
disparity levels. To reduce such errors, the aggregated cost is
computed by combining the support weights of both support
windows as in [4]. The aggregated matching cost between pixel
and pixel in Fig. 6 is given in the weighted mean form:

(11)

where and represent the left and right support windows,
respectively, and the function is the support weight of
pixel in the right window.
After the aggregated matching costs have been computed

within the disparity range, the disparity map is obtained by
determining the disparity of each pixel through the
Winner-Takes-All (WTA) algorithm:

(12)

where represents the set of all possible disparities.

(10)
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Fig. 10. Illustration of the occlusion filling process.

To make sure that both left and right disparities are spatially
consistent, we perform a left-right consistency check to detect
unreliable pixels. These unreliable pixels are those having dif-
ferent disparities on the left and right images. Fig. 10 illustrates
an example of occlusion handling. In Fig. 10, for each unreliable
pixel , the cross-based aggregation method [22] generates
a neighborhood for as shown for the yellow region in
Fig. 10, where is the left most reliable pixel. The white
region indicates unreliable (occluded) region, dark gray region
is background, and the light gray region is the foreground. All
reliable pixels within the neighborhood vote for the candidate
disparity value at . The unreliable pixel at is filled
with the majority of the reliable pixel in the voting region. By
this method, the center pixel is not automatically selected as the
center pixel for occlusion handling. Instead, a first non-occluded
pixel is selected to define the neighborhood. In Fig. 10, a left dis-
paritymap is used as an example, where occlusion pixels (white)
appear at the right side of the background, left side of the fore-
ground if the disparity is positive. (In the right image, occlusion
pixels would appear at the left side of the background, right side
of the foreground). Only the occlusion pixels are selected and
needed to be processed. For an arbitrary occlusion pixel ,
the method starts at its left neighbor pixel to determine whether
it is an non occluded pixel. If it is occluded, continue to the left.
If it is non-occluded, the procedure stops. In Fig. 10, for the pixel
at , the process goes to the left for s pixels. A neighborhood
is constructed based on the cross-based aggregation method on
pixel . Every non-occluded pixel within that region
votes. The majority disparity values in that region is assigned to
occlusion pixel . Fig. 10 presents an ideal situation where
the majority is obviously the background, and consequently, the
white region will be filled with the background.
Prior window-based voting methods [23] have been based on
instead of . The number of non occlusion pixels

in the window constructed based on will be significantly
smaller than that in the window constructed based on .
Therefore, suchmethods are muchmore sensitive to outliers due
to fewer votes, and yield inaccurate result.
Other methods such as plane fitting [24] for multiple disparity

planes, which is very computationally expensive. It is an itera-
tive process that treats the occlusion pixel as outliers and finds
the plane that minimizes the error for non occlusion regions, and
fills the occlusion pixel as if it is on the plane. In the other hand,
the proposed occlusion method is non-iterative and is thus more
efficient.

Fig. 11. Errors (Bad pixels) rate versus census window size. (a) “Venus”.
(b) “Teddy”.

Fig. 12. Comparison of the original census (2 mode) and the three-moded
census with a noise buffer on “Computer”. (a) Left image. (b) Original census.
(c) Three-moded census. (d) Original census on noise added image. (e) Three-
moded census on noise added image.

V. EXPERIMENTS AND RESULTS

A. Disparity Estimation Results on Stereo Images

Toevaluatehowthesizeof theoriginalandcross-squarecensus
window affects the disparity performance, we use two Middle-
bury datasets (“Venus” and “Teddy”). As shown in Fig. 11(a),
the error rate of original census (green) decreases sharply as
the window size increases from 3 to 7. That is when the census
transformed data contains more spatial structure information,
and therefore the similarity measure is more accurate. However,
the error rate increases as thewindow size increases from 7 to 15.
It is due to the fact that larger censuswindowwould includemore
pixels from occlusion areas as well as including more noises,
whichdecreases theaccuracyof the similaritymeasure.Thecross
census window has four wings as shown in Fig. 2, and each wing
consists of 3 pixels in the experiment. It is worth noting that the
proposed cross-square window outperforms the original square
one with even smaller window size as shown in Fig. 11.
We implement the three-moded census transformwith a noise

buffer for robustness to image noise in flat areas. Fig. 12 illus-
trates that the three-moded census with a noise buffer performs
better than the original census in flat area. To simulate noise in
flat areas, we add Gaussian noise, distributed as , to
the original image. For the noise buffer , the parameter is
set to be 50. First we perform the experiment on the original
image, where the three-moded census reduces some errors in
the flat area as shown in Fig. 12(c). Second we perform the ex-
periment on the noise-added image. In this case, the proposed
noise buffer is more effective, as it reduces much more errors,
shown in Fig. 12(e). We also verify that the three-moded census
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TABLE I
LOCAL METHOD PERFORMANCE EVALUATION ON MIDDLEBURY

(BAD PIXEL PERCENTAGE WITH THRESHOLD OF 1)

Fig. 13. Disparity maps for the “Tsukuba”, “Venus”, “Teddy” and “Cones”.
Centered column shows ground truth disparity map and right-most column
shows the disparity map from the proposed algorithm.

shows better overall performance in terms of bad pixel rate than
the original census.
The performance evaluation is performed on Middlebury

datasets with ground truth disparity maps provided by Middle-
bury online benchmark [8]. The parameters are set to constant
values:
and . The size of the support window is 35 35 (the
same size as the LASW [4]) and the size of the cross-square
census window is 5 5 for square with 3 pixels for a wing.
Table I summarizes the quantitative results taken from the
Middlebury database for local methods. The bad pixel (error)
rate is expressed as

% (13)

where represents the number of pixel in whole image and
I denotes the indicator function. represents the true dis-
parity at pixel and represents the bad pixel threshold. Our
method achieves excellent results ranking 13th out of about 130

TABLE II
PERFORMANCE COMPARISON OF METHODS ON FIVE STEREO VIDEOS

(BAD PIXEL PERCENTAGE WITH THRESHOLD OF 1)

Fig. 14. Disparity map for “Jamie1” and “Ilkay”. (a) Left frames. (b) LASW.
(c) Cost-filter. (d) Proposed method. (e) After occlusion filling. (f) After TV
[12].

methods and is the best performing local method at the time
of the submission. Our method is an efficient one-pass method
with no iteration or postprocessing. It outperforms the original
local method (LASW ranking 67th), using efficient algorithms
and structures. Fig. 13 shows left images (in the first column),
ground truth disparity maps (in the second column) and our dis-
paritymap (in the third column). The proposedmethod produces
accurate dense disparity map as shown in Fig. 13. Our method
ranks 1st on “Cones” in the both non-occlusion test and discon-
tinuity test.
In the proposed method, it takes about 12 s to compute the

disparity map on “Tsukuba”. It has been presented in [25] that
the LASW [4] can be adopted into a real-time application by
using a Graphics Processing Unit (GPU). Therefore, the same
could be done with our work since our method has a similar
framework to [4].

B. Disparity Estimation Results on Stereo Videos

To assess the performance of the proposed method quan-
titatively on stereo videos, we use 5 synthetic stereo videos
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Fig. 15. Performance evaluation according to the window size and 6 parameters on four stereo images and five stereo videos. (a) Changing the window size.
(b) Changing . (c) Changing . (d) Changing . (e) Changing . (f) Changing . (g) Changing while the other parameters are kept constant.

(400 300, 64 disparity range) with ground truth disparity
[26]. We compare three methods (LASW, Cost-filter, and pro-
posed method) without occlusion filling to compare their pure
performance. The LASWmethod ranks 67th and the Cost-filter,
which is one of the best performing local method ranks 20th on
the Middlebury benchmark. All of three methods are efficient
one-pass local methods having similar structure. Table II shows
the average percentage of bad pixels (threshold of 1) over all
frames. We ignore borders when computing statistics since
they lack correspondences. Table II illustrates that the proposed
method, using the motion cue has the best performance.
To assess the performance of the proposed method subjec-

tively, we perform experiments on real-world videos, “Jamie1”
and “Ilkay,” scenes from the Microsoft i2i database (320 240,
64 disparity range). Jamie1 video is more challenging than Ilkay
because it contains large flat areas and repetitive patterns, as
shown in Fig. 14. Fig. 14(b) shows the disparity maps produced
by LASW, Fig. 14(c) shows the disparity maps produced by
Cost-filter, and Fig. 14(d) shows the disparity maps produced
by the proposed method. Fig. 14 illustrates that the proposed
method obtains the best quality of disparity map. On the other
hand, LASW yields the worst quality and Cost-filter produces
many errors in flat and repetitive areas. As additional results,
Fig. 14(e) shows the disparity maps where the occlusion areas
in Fig. 14(d) are filled by valid values and Fig. 14(f) shows the
disparity maps refined with TV algorithm [12], which reduces
errors such as spatial noise and temporal inconsistencies in the
background.

C. Sensitivity to the Parameter Values

The robustness of the proposed method when changing the
parameters is examined. Fig. 15(a) shows the performance eval-
uation for different support window size on four Middlebury

stereo images and illustrates that the proposed method is fairly
insensitive to the support window size when the size is larger
than 15 15. This is due to the fact that the advanced support
weight method groups same depth pixels well, and thus out-
liers do not increase even though the window size increases.
Fig. 15(b) and (c) show the performance according to changing
the similarity parameter and the proximity parameter .
They also illustrate that the proposed method is robust to the
different parameter setting when they are larger than a certain
value. Fig. 15(d) shows the performance for different motion pa-
rameter value on five stereo videos where the performance
of the proposed method is almost constant to the motion param-
eter values. As shown in Fig. 15(e), (f), and (g), the performance
is also insensitive to the three cost measure parameters

. Consequently, the six parameter values are not critical in
the performance of the proposed method since they are used in
the efficiently integrated form as in (6) and (10).

VI. CONCLUSION

In the local stereo matching, the accuracy of the disparity map
depends on the similarity measure and the support weight. We
propose a novel three-moded census with a noise buffer and
cross-square census to increase robustness to image noise in
flat areas and the accuracy of similarity measure. We show that
the combination of three similarity measures produces more re-
liable cost measure in a variety of image regions. To obtain
more precise support weight, conditional and correlated support
model are introduced. We consider object motion flow to take
advantage of benefits of motion in video disparity estimation.
Simulation results verify that the proposed method outperforms
the other state-of-the-art local methods on both stereo images
and videos. Moreover, the proposed method is not sensitive to
the parameter values.
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